INTRODUCTION TO DATABASES

What is an RDBMS?

A relational database management system (RDBMS) is a program that lets you create, update, and administer a relational database. An RDBMS takes Structured Query Language (SQL) statements entered by a user or contained in an application program and creates, updates, or provides access to the database. Some examples of RDBMS's include Oracle, SQL Server, DB2 and Interbase.

The database that CAMAlot utilizes is an INTERBASE database.

DATABASE COMPONENTS

1. TABLES

Tables are subsets of data within the database. Each table contains specific information. More often than not, tables within a database are related to each other.

For example:

TABLE – PropertyHeader – contains specific information about a property.

 ImprovementHeader –contains specific information about an improvement (or building)

 These tables need to be ‘related’ in order to know which buildings belong to which properties.

· COLUMNS – Each Table is made up of one or more columns. Columns are used to organize the data within a table.

For example:

TABLE – PropertyHeader – contains columns like PropID, Roll, Address, LotNo, BlockNo, PlanNo, etc.

· RECORDS – Each row of data within a TABLE is called a record. Each roll number (and all the other columns) makes up a record in the PropertyHeader table.

· PRIMARY KEY – The primary key is a column (or more than one column) that uniquely identifies each record within a table. In the PropertyHeader table the primary key is the PropID.

2. VIEWS

Views provide a way to create a customized version of the underlying tables that display only the clusters of data that a given user or group of users is interested in.

Once a view is defined, you can display and operate on it as if it were an ordinary table. A view can be derived from one or more tables, or from another view. Views look just like ordinary database tables, but they are not physically stored in the database. The database stores only the view definition, and uses this definition to filter the data when a query referencing the view occurs.

3. PROCEDURES

A stored procedure is a self-contained program written in InterBase procedure and trigger language, and stored as part of the database metadata. Once you have created a stored procedure, you can invoke it directly from an application, or substitute the procedure for a table or view in a SELECT statement. Stored procedures can receive input parameters from and return values to applications or queries.

4. TRIGGERS

A trigger is a self-contained routine associated with a table or view that automatically performs an action when a row in the table or view is inserted, updated, or deleted. A trigger is never called directly. Instead, when an application or user attempts to INSERT, UPDATE, or DELETE a row in a table, any triggers associated with that table and operation are automatically executed, or fired.
5. UDFs

User-defined functions (UDFs) are host-language programs for performing frequently

needed tasks, supplementing built-in SQL functions such as MIN() and MAX(). UDFs are

extensions to the InterBase server and execute as part of the server process.

SQL

The history of SQL begins in an IBM laboratory in San Jose, California, where SQL was developed in the late 1970s. The initials stand for Structured Query Language, and the language itself is often referred to as "sequel.". It was originally developed for IBM's DB2 product (a relational database management system, or RDBMS, that can still be bought today for various platforms and environments).

SQL (Structured Query Language) is a standard interactive and programming language for getting information from and updating a database. Queries take the form of a command language that lets you select, insert, update, find out the location of data, and so forth.

SELECT STATEMENT

General Rules of Syntax

As you will find, syntax in SQL is quite flexible, although there are rules to follow as in any programming language. A simple query illustrates the basic syntax of an SQL select statement. Pay close attention to the case, spacing, and logical separation of the components of each query by SQL keywords.

SELECT ROLL, PLANNO, BLOCKNO, LOTNO

FROM PROPERTYHEADER

WHERE PLANNO = '296NY';

In this example everything is capitalized, but it doesn't have to be. The preceding query would work just as well if it were written like this:

select roll, planno, blockno, lotno

from propertyheader

where planno = '296NY';

Notice that NY in PLANNO appears in capital letters in both examples. Although actual SQL statements are not case sensitive, references to data in a database are.

NOTE: Commands in SQL are not case sensitive.

Take another look at the sample query. Is there something magical in the spacing? Again the answer is no. The following code would work as well:

Select Roll, PlanNo, BlockNo, LotNo from PropertyHeader where PlanNo = '1621NY';

However, some regard for spacing and capitalization makes your statements much easier to read. It also makes your statements much easier to maintain when they become a part of your project.

If the magic isn't in the capitalization or the format, then just which elements are important? The answer is keywords, or the words in SQL that are reserved as a part of syntax. (Depending on the SQL statement, a keyword can be either a mandatory element of the statement or optional.) The keywords in the current example are

 * SELECT
 * FROM
 * WHERE

The Building Blocks of Data Retrieval: SELECT and FROM

As your experience with SQL grows, you will notice that you are typing the words SELECT and FROM more than any other words in the SQL vocabulary. They aren't as glamorous as CREATE or as ruthless as DROP, but they are indispensable to any conversation you hope to have with the computer concerning data retrieval. And isn't data retrieval the reason that you entered mountains of information into your very expensive database in the first place?

As a minimum you need both SELECT and FROM in the statement. Together, the statements SELECT and FROM begin to unlock the power behind your database.

Example using the PropertyHeader table:

Select * From PropertyHeader

This output shows all the COLUMNS and RECORDS in the table PropertyHeader.

The asterisk (*) in select * tells the database to return all the columns associated with the given table described in the FROM clause. The database determines the order in which to return the columns.

Changing the Order of the Columns

The preceding example of an SQL statement used the * to select all columns from a table, the order of their appearance in the output being determined by the database. To specify the order of the columns, you could type something like:

SELECT Roll, Planno, BlockNo, LotNo FROM PropertyHeader

Notice that each column name is listed in the SELECT clause. The order in which the columns are listed is the order in which they will appear in the output. Notice both the commas that separate the column names and the space between the final column name and the subsequent clause (in this case FROM).

Another way to write the same statement follows.

SELECT Roll, Planno, BlockNo, LotNo

FROM PropertyHeader

Notice that the FROM clause has been carried over to the second line. This convention is a matter of personal taste when writing SQL code.

The output is identical because only the format of the statement changed. Now that you have established control over the order of the columns, you will be able to specify which columns you want to see.

“Select * “ returns all columns and “Select column1, column2, …” returns individual columns.

What if you need information from a different table?

You would simply change the FROM clause to the desired table and type the following statement:

Select * From ImprovementHeader

With a single change you have a new data source.

Queries with Distinction

If you look at the original table, PropertyHeader, you see that some of the data repeats (PlanNo). One option in the SELECT statement is DISTINCT, try:

Select DISTINCT PlanNo From PropertyHeader

Because you specified DISTINCT, only one instance of the duplicated data is shown.

Summary:

The keywords SELECT and FROM enable the query to retrieve data. You can make a broad statement and include all tables with a SELECT * statement, or you can rearrange or retrieve specific tables. The keyword DISTINCT limits the output so that you do not see duplicate values in a column.

Exercises

1. Using the PropertyHeader table, write a query that returns only the Roll and PlanNo.

2. Rewrite the query from exercise 1 so that the PlanNo will appear as the first column in your query results.

3. Using the ImprovementHeader table, write a query to return all the unique YearBuilt.

CONDITIONS (the WHERE clause)

Now, examine the following statement:

SELECT ROLL, PLANNO, BLOCKNO, LOTNO

FROM PROPERTYHEADER

WHERE PLANNO = '296NY'

It contains a condition, PLANNO = '296NY'

If you ever want to find a particular item or group of items in your database, you need one or more conditions. Conditions are contained in the WHERE clause. In the preceding example, the condition is

PLANNO = '296NY'

Conditions enable you to make selective queries. In their most common form, conditions comprise a variable, a constant, and a comparison operator. In the first example the variable is PlanNo, the constant is '296NY', and the comparison operator is =.

SELECT, FROM, and WHERE are the three most frequently used clauses in SQL. WHERE simply causes your queries to be more selective. Without the WHERE clause, the most useful thing you could do with a query is display all records in the selected table(s).

Operators

Operators are the elements you use inside an expression to articulate how you want specified conditions to retrieve data. Operators fall into six groups: arithmetic, comparison, character, logical, set, and miscellaneous.

Arithmetic Operators

The arithmetic operators are plus (+), minus (-), divide (/), and multiply (*).

If you place several of these arithmetic operators in an expression without any parentheses, the operators are resolved in this order: multiplication, division, addition, and subtraction.

You can use the plus sign in several ways. Type the following statement:

SELECT Imprid, YearBuilt, YearEffective, YearBuilt - YearEffective

FROM ImprovementHeader
You created a new column that is not in the original table. SQL allows you to create a virtual or derived column by combining or modifying existing columns.

You can fix the unattractive column heading by typing:

SELECT Imprid, YearBuilt, YearEffective, YearBuilt – YearEffective AS Difference

FROM ImprovementHeader
Comparison Operators

True to their name, comparison operators compare expressions and return one of three values: TRUE, FALSE, or Unknown. Wait a minute! Unknown? TRUE and FALSE are self-explanatory, but what is Unknown?

To understand how you could get an Unknown, you need to know a little about the concept of NULL. In database terms NULL is the absence of data in a field. It does not mean a column has a zero or a blank in it. A zero or a blank is a value. NULL means nothing is in that field. If you make a comparison like Field = 9 and the only value for Field is NULL, the comparison will come back Unknown. Because Unknown is an uncomfortable condition, most flavors of SQL (including INTERBASE) change Unknown to FALSE and provide a special operator, IS NULL, to test for a NULL condition.

Here's an example of NULL:

SELECT roll, parcelarea

FROM PROPERTYHEADER

WHERE ParcelArea IS NULL

Notice that nothing is printed out in the ParcelArea column. The value for the field is NULL. The NULL is noticeable in this case because it is in a numeric column. However, if the NULL appeared in the ITEM column, it would be impossible to tell the difference between NULL and a blank.

Greater Than (>) and Greater Than or Equal To (>=)

The greater than operator (>) works like this:

SELECT roll, yearbuilt

FROM ImprovementHeader

Where YearBuilt > 1999

Now try:

SELECT roll, yearbuilt

FROM ImprovementHeader

Where YearBuilt >= 1999

Inequalities (< >)

When you need to find everything except for certain data, use the inequality symbol.

SELECT * FROM IMPROVEMENTHEADER WHERE YEARBUILT <> 2001

Character Operators

You can use character operators to manipulate the way character strings are represented, both in the output of data and in the process of placing conditions on data to be retrieved. This section describes two character operators: the LIKE operator and the || operator, which conveys the concept of character concatenation.

I Want to Be Like LIKE

What if you wanted to select parts of a database that fit a pattern but weren't quite exact matches? You could use the equal sign and run through all the possible cases, but that process would be boring and time-consuming. Instead, you could use LIKE. Consider the following:

Select Roll, Address

From PropertyHeader

Where Address like '%ANNETTE%'

You can see the use of the percent sign (%) in the statement after LIKE. When used inside a LIKE expression, % is a wildcard. What you asked for was any occurrence of ANNETTE in the address.

You could use this by doing:

Select Roll, PlanNo

From PropertyHeader

Where PlanNo LIKE ‘00%’

This finds all the Plans starting with 00 or the 2000 plans.

What if you want to find data that matches all but one character in a certain pattern? In this case you could use a different type of wildcard: the underscore.

Underscore (_)

Type this:

Select Roll, PlanNo

From PropertyHeader

Where PlanNo like '%A_'

This finds all the plan numbers that have an A followed by anything.

Concatenation (||)

Try:

Select Roll, PlanNo||BlockNo||LotNo

From PropertyHeader
The || (double pipe) symbol concatenates strings.

Notice that || is used instead of +. Using + tries to add them like numbers and it errors.

Here's a more practical example using concatenation:

Select Roll, PlanNo||’/’||BlockNo||’/’||LotNo as UrbanLegal

From PropertyHeader
This statement inserts the slash to make the data more readable. It also renames the column.

Logical Operators

So far you have performed the comparisons one at a time. That method is fine for some problems, but what if you need to find all the 2000 plans with no Parcel Area. Logical operators separate two or more conditions in the WHERE clause of an SQL statement.

Try:

Select Roll, PlanNo, ParcelArea

From PropertyHeader

Where PlanNo like '00%' and

 ParcelArea IS NULL

You used the logical operator AND to ensure that you found records that met the criteria.

AND means that the expressions on both sides must be true to return TRUE. If either expression is false, AND returns FALSE.

OR requires that only one of the conditions be true in order for data to be returned. Try:

Select Roll, PlanNo, ParcelArea

From PropertyHeader

Where PlanNo like '00%' or

 ParcelArea IS NULL

This returns all data that meets either condition.

NOT means just that. If the condition it applies to evaluates to TRUE, NOT make it FALSE. If the condition after the NOT is FALSE, it becomes TRUE. Try:

Select Roll, PlanNo, ParcelArea

From PropertyHeader

Where PlanNo NOT LIKE '00%'
This example returns all plans that don’t start with 00.

NOT can also be used with the operator IS when applied to NULL. Try:

Select Roll, ParcelArea

From PropertyHeader

Where ParcelArea IS NOT NULL

Miscellaneous Operators: The two operators IN and BETWEEN provide a shorthand for functions you already know how to do.

If you wanted to find all buildings with Model Type 3, 4 or 5 you could type:

Select Roll, Model_qk

From ImprovementHeader

Where Model_qk = 3 or Model_qk = 4 or Model_qk = 5

You could use IN to reduce the amount of typing:

Select Roll, Model_qk

From ImprovementHeader

Where Model_qk IN (3,4,5)

If you wanted to find all Sale Prices between 150000 and 160000 you could type:

Select Roll, SalePrice

From SalesHeader

Where SalePrice >= 150000 and SalePrice <= 160000

The same thing could be accomplished using between:

Select Roll, SalePrice

From SalesHeader

Where SalePrice Between 150000 and 160000

At the beginning, you knew how to use the basic SELECT and FROM clauses. Now you know how to use a host of operators that enable you to fine-tune your requests to the database. You learned how to use arithmetic, comparison, character, logical, and set operators.

Exercises

1. Select all the Rolls from the MARKETLANDHEADER table that have a LOCATION_QK of 1103 and a VALUEBASE_QK of 1.

2. Select the Rolls from the PROPERTYHEADER table that have a PLANNO starting with 99 and a PARCELAREA that is empty.

Aggregate Functions

Functions in SQL enable you to perform feats such as determining the sum of a column.

These functions greatly increase your ability to manipulate the information you retrieved using the basic functions of SQL that were described earlier this week. The first five aggregate functions, COUNT, SUM, AVG, MAX, and MIN, are defined in the ANSI standard.

These functions are also referred to as group functions. They return a value based on the values in a column. (After all, you wouldn't ask for the average of a single field.) The examples in this section use the table PropertyHeader.

COUNT

The function COUNT returns the number of rows that satisfy the condition in the WHERE clause. Say you wanted to know how many properties are in a certain PlanNo. You would type

Select COUNT(*)

From PropertyHeader

Where PlanNo = ‘9925351’
To make the code more readable, try an alias:

Select COUNT(*) as CountOfPlan

From PropertyHeader

Where PlanNo = ‘9925351’

Would it make any difference if you tried a column name instead of the asterisk? (Notice the use of parentheses around the column names.) Try this:

Select COUNT(Roll) as CountOfPlan

From PropertyHeader

Where PlanNo = ‘9925351’

The answer is no.

SUM

SUM does just that. It returns the sum of all values in a column. To find out how much land assessment there is in the AssessmentAdjustment table you would type

Select SUM(LandValue) as TotalLand

From AssessmentAdjustment

To get several sums, use

Select SUM(LandValue), SUM(ImprValue), SUM(TotalValue)

From AssessmentAdjustment
SUM works only on numeric data.

AVG

The AVG function computes the average of a column. To find the average vacant sale price try:

Select AVG (SalePrice)

From SalesHeader

Where Improved = 0

Like the SUM function, AVG works only with numbers.

MAX

If you want to find the largest value in a column, use MAX. For example, what is the highest SalePrice in the system?

Select MAX(SalePrice)

From SalesHeader

What happens if you try a nonnumeric column?

Select MAX (Address)

From PropertyHeader
Here's something new. MAX returns the highest (closest to Z) string.

MIN

MIN does the expected thing and works like MAX except it returns the lowest member of a column.

To find out the lowest SalePrice, type:

Select MIN(SalePrice)

From SalesHeader

You can also combine the aggregate functions. For example:

Select Count(SalePrice), MIN(SalePrice), MAX(SalePrice), AVG(SalePrice)

From SalesHeader

CLAUSES

 * STARTING WITH

 * ORDER BY

 * GROUP BY

 * HAVING

At the top of this statement is SELECT, which we have used many times. SELECT is followed by FROM, which should appear with every SELECT statement you typed. WHERE (covered already), GROUP BY, HAVING, and ORDER BY all follow. Each clause plays an important part in selecting and manipulating data.

STARTING WITH

STARTING WITH is an addition to the WHERE clause that works exactly like LIKE(<exp>%).

Select Roll, PlanNo

From PropertyHeader

Where PlanNo LIKE ‘00%’

Is the exact same as:

Select Roll, PlanNo

From PropertyHeader

Where PlanNo Starting With ‘00’

ORDER BY

The ORDER BY clause gives you a way of ordering your results. For example:

Select Roll, SalePrice

From SalesHeader

Order By SalePrice

What if you want to list the data in reverse order, with the highest number or letter first? Try:

Select Roll, SalePrice

From SalesHeader

Order By SalePrice Descending
The DESCENDING at the end of the ORDER BY clause orders the list in descending order instead of the default (ascending) order.

You can also use ORDER BY on more than one field. To order the sales by roll and then by saledate you would type:

Select Roll, SaleDate, SalePrice

From SalesHeader

Order By Roll, SaleDate

GROUP BY

Earlier you learned how to use aggregate functions (COUNT, SUM, AVG, MIN, and MAX). Remember when we did:

Select COUNT(Roll)

From PropertyHeader

Where PlanNo = ‘9925351’
What if we wanted the count of roll numbers in every plan? This is where we would use GROUP BY.

Select PlanNo, COUNT(Roll)

From PropertyHeader

Group By PlanNo

In the preceding example, you were able to perform group functions on unique groups using the GROUP BY clause. Also notice that the results were ordered by PlanNo. GROUPS BY also acts like the ORDER BY clause. What would happen if you tried to group by more than one column? Try this:

Select PlanNo, BlockNo, COUNT(Roll)

From PropertyHeader

Group By PlanNo, BlockNo

HAVING

How can you qualify the data used in your GROUP BY clause? Lets count how many buildings are on each property.

Select Roll, Count(ImprID)

From ImprovementHeader

Group By Roll

Now what if you wanted to know how many properties have more than 3 buildings? Try:

Select Roll, Count(ImprID)

From ImprovementHeader

Group By Roll

Having Count(ImprID) > 3

Is it possible to use everything you have learned in one query? Try:

Select Roll, Count(ImprID)

From ImprovementHeader

Where YearBuilt > 1990

Group By Roll

Having Count(Imprid) > 3

Now you have learned all the clauses you need to exploit the power of a SELECT statement. Remember to be careful what you ask for because you just might get it. Your basic SQL education is complete. You already know enough to work effectively with single tables. Next comes queries using Multiple Tables.

Exercises

1. Using the SalesHeader table, find out how many sales have occurred each year since 1990. (Column Name you need is “SaleYear”)

2. Do the same thing, but now restrict your query to only Vacant Sales (Improved = 0).

JOINS

Next you will learn about joins. This information will enable you to gather and manipulate data across several tables. By the end of the day, you will understand and be able to do the following:

 * Perform an outer join

 * Perform a left join

 * Perform a right join

 * Perform an equi-join

 * Perform a non-equi-join

 * Join a table to itself

Introduction

One of the most powerful features of SQL is its capability to gather and manipulate data from across several tables. Without this feature you would have to store all the data elements necessary for each application in one table. Without common tables you would need to store the same data in several tables. The JOIN statement of SQL enables you to design smaller, more specific tables that are easier to maintain than larger tables.

Multiple Tables in a Single SELECT Statement

Here’s some data from the ImprovementHeader table:

Select Roll, Model_qk, Quality_qk, Structure_qk

From ImprovementHeader

Here’s some data from the PropertyHeader table:

Select Roll, Address

From PropertyHeader

To join these two tables, type this:

SELECT *

FROM ImprovementHeader, PropertyHeader

A close examination of the result of your first join shows that each row from ImprovementHeader was added to each row from PropertyHeader.

Congratulations! You have performed your first join. But what kind of join? An inner join? an outer join? or what? Well, actually this type of join is called a cross-join. A cross-join is not normally as useful as the other joins covered today, but this join does illustrate the basic combining property of all joins: Joins bring tables together.

Finding the Correct Column

When you joined ImprovementHeader and PropertyHeader, you used SELECT *, which returned all the columns in both tables. What if we just want a few columns, the SELECT statement is a bit more complicated:

Select PropertyHeader.PropID, PropertyHeader.Address, ImprovementHeader.PropID, ImprovementHeader.Model_qk

From PropertyHeader , ImprovementHeader
When selecting certain columns you need to tell the query which table each column is in. The make for less typing we can use alias’:

Select P.PropID, P.Address, I.PropID, I.Model_qk

From PropertyHeader P , ImprovementHeader I
Equi-Joins

Looking at the data from the previous query provides a clue as to what is missing. Notice the PropID is common to both tables (but they don’t line up). What if you typed:

Select P.PropID, P.Address, I.PropID, I.Model_qk

From PropertyHeader P , ImprovementHeader I
Where P.PropID = I.PropID

Using the column PropID that exists in both of the preceding tables, you have just combined the information you had stored in the PropertyHeader table with information from the ImprovementHeader table to show the model types that exist on each property. The join that was used is called an equi-join because the goal is to match the values of a column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE clause. For example:

Select P.PropID, P.Address, I.PropID, I.Model_qk

From PropertyHeader P , ImprovementHeader I
Where P.PropID = I.PropID and

 I.YearBuilt > 1990

Outer Joins versus Inner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the inner join. An inner join is where the rows of the tables are combined with each other, producing a number of new rows equal to the product of the number of rows in each table. Also, the inner join uses these rows to determine the result of the WHERE clause. An outer join groups the two tables in a slightly different way. Here is an example of an Inner Join:

Select P.PropID, P.Address, I.Model_Qk

From PropertyHeader P

INNER JOIN ImprovementHeader I on I.PropId = P.PropID

Notice the absence of the WHERE clause in this type of join.

The result is that all the rows in PropertyHeader are spliced on to specific rows in ImprovementHeader. This shows all records that are in both the PropertyHeader and in the ImprovementHeader (All properties with buildings).

Here's a LEFT OUTER JOIN statement:

Select P.PropID, P.Address, I.Model_Qk

From PropertyHeader P

LEFT OUTER JOIN ImprovementHeader I on I.PropId = P.PropID

This type of query is new. First you specified a LEFT OUTER JOIN, which caused SQL to return a full set of the left table, PropertyHeader, and to place nulls in the Model_qk where there are no buildings.

Now you have learned almost everything there is to know about the SELECT clause.

Exercises

1. Find all the vacant sales in 1999 and include in the Output, the Roll Number, Address, SaleDate and SalePrice. (Tables you need are the SalesHeader and the PropertyHeader …)

SUBQUERY

A subquery is a query whose results are passed as the argument for another query. Subqueries enable you to bind several queries together. Type the following:

Select Roll, Address

From PropertyHeader

Where PropID IN (Select PropID From ImprovementHeader where YearBuilt = 2000)

This returns all roll numbers and addresses for properties that have buildings built in the year 2000.

Using Aggregate Functions with Subqueries

The aggregate functions SUM, COUNT, MIN, MAX, and AVG all return a single value. To find all sales that are greater than the average saleprice, type this:

Select Roll, SalePrice

From SalesHeader

Where SalePrice > (Select AVG(SalePrice) From SalesHeader)

SELECTING FROM A VIEW

Selecting from a View is the exact same as selecting from a Table. The user doesn’t even need to know if they are selecting from a view or table. Type:

Select * from ModelTypes

Here you selected from a View. This view happens to be a sub-select from the table Codes.

SELECTING FROM A STORED PROCEDURE

The syntax is different that what we have been using when selecting from a Stored Procedure.

The SELECT part is the same as when selecting from a table:

Select * Or Select Column1, Column2, etc.

The columns you ask for are those that are ‘output’ of the stored procedure.

The FROM part of the select is slightly different. The syntax for this is:

FROM StoredProcedureName (InputParameter1, InputParameter2, etc.)

When selecting from a stored procedure you must supply a value for each input parameter that is defined for the stored procedure.

Type the following:

Select * from CalcML_Muni(292)

Here we are selecting all columns from the procedure called ‘CalcML_MuniID’. This procedure only has one parameter that is the MuniID.

Another example is a procedure that returns some data for each market location: The Input Parameters are the MuniID, the Assessment Year, and an Assessment Code. The Output Parameters are the Location_qk,

Location_Name, Sale Count, Average Sale price and Average Assessment. To select from the procedure you would type the following

Select * from AVERAGEPERLOCATION (292, 2000, 1001)

EXPLANATION OF CAMAlot DATABASE

ACCESS

